General announcements

▶ Hint on Exercise 3: Taylor expansion.
Construct a Taylor polynomial approximation for \(\ln(1 + x) \) that is accurate to within \(10^{-3} \) over \([-\frac{3}{4}, \frac{3}{4}]\).
Use the book’s statement of Taylor’s theorem, particularly

\[
R_n(x) = \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) \, dt.
\]

Bound \(\frac{x-t}{1+t} \) in terms of \(x \). Plotting this as a function of \(t \) for several values of \(x \) provides inspiration.
General announcements

▶ Hint on Exercise 3: Taylor expansion.
Construct a Taylor polynomial approximation for \(\ln(1 + x) \) that is accurate to within \(10^{-3} \) over \(\left[-\frac{3}{4}, \frac{3}{4} \right] \).
Use the book’s statement of Taylor’s theorem, particularly

\[
R_n(x) = \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) \, dt.
\]

Bound \(\frac{x-t}{1+t} \) in terms of \(x \). Plotting this as a function of \(t \) for several values of \(x \) provides inspiration.

▶ Not many people used “newpageoffigures,” “newfigure,” and “printfigures” on the lab. That’s okay, but it makes me wonder if people are having trouble producing plots.
General announcements

- **Hint on Exercise 3: Taylor expansion.**

 Construct a Taylor polynomial approximation for $\ln(1 + x)$ that is accurate to within 10^{-3} over $[-\frac{3}{4}, \frac{3}{4}]$.

 Use the book’s statement of Taylor’s theorem, particularly

 $$R_n(x) = \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) \, dt.$$

 Bound $\frac{x-t}{1+t}$ in terms of x. Plotting this as a function of t for several values of x provides inspiration.

- **Not many people used “newpageoffigures,” “newfigure,” and “printfigures” on the lab.** That’s okay, but it makes me wonder if people are having trouble producing plots.

- **The fplot command takes a third parameter, specifying the minimum number of points to use when plotting, e.g.,**

  ```matlab
  fplot(@(x) exp(-10000*(x-0.5).^2), [-1,1], 100);
  ```

Test 1 on Monday, 3/12, covering material through the bisection method (today’s lecture).
General announcements

- Hint on Exercise 3: Taylor expansion.
 Construct a Taylor polynomial approximation for \(\ln(1 + x) \) that is accurate to within \(10^{-3} \) over \([-\frac{3}{4}, \frac{3}{4}]\).
 Use the book’s statement of Taylor’s theorem, particularly

 \[
 R_n(x) = \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) \, dt.
 \]

 Bound \(\frac{x-t}{1+t} \) in terms of \(x \). Plotting this as a function of \(t \) for several values of \(x \) provides inspiration.

- Not many people used “newpageoffigures,” “newfigure,” and “printfigures” on the lab. That’s okay, but it makes me wonder if people are having trouble producing plots.

- The \texttt{fplot} command takes a third parameter, specifying the minimum number of points to use when plotting, e.g.,

 \[
 \texttt{fplot(@(x) exp(-10000*(x-0.5).^2), [-1,1], 100);}
 \]

- Test 1 on Monday, 3/12, covering material through the bisection method (today’s lecture).
Lab: Computing log1p

- Overall, I am very happy with the work on the first lab. The problem statement required you to think through many issues and come up with some clever ideas. I saw people working hard, and the final product shows.
Lab: Computing log1p

- Overall, I am very happy with the work on the first lab. The problem statement required you to think through many issues and come up with some clever ideas. I saw people working hard, and the final product shows.
- Remember that resubmissions will be accepted. There will be a 10-point penalty assessed on the first resubmission, so everyone still has the chance to receive 90%.
Lab: Computing log1p

- Overall, I am very happy with the work on the first lab. The problem statement required you to think through many issues and come up with some clever ideas. I saw people working hard, and the final product shows.
- Remember that resubmissions will be accepted. There will be a 10-point penalty assessed on the first resubmission, so everyone still has the chance to receive 90%.
- Include an abstract with the next lab.
Lab: Computing log1p

- Overall, I am very happy with the work on the first lab. The problem statement required you to think through many issues and come up with some clever ideas. I saw people working hard, and the final product shows.
- Remember that resubmissions will be accepted. There will be a 10-point penalty assessed on the first resubmission, so everyone still has the chance to receive 90%.
- Include an abstract with the next lab.
- I made some requests for improvements even if I assigned full credit. Please make these before submitting your portfolio, even though they will not affect your grade.
Lab: Computing log1p

- Overall, I am very happy with the work on the first lab. The problem statement required you to think through many issues and come up with some clever ideas. I saw people working hard, and the final product shows.
- Remember that resubmissions will be accepted. There will be a 10-point penalty assessed on the first resubmission, so everyone still has the chance to receive 90%.
- Include an abstract with the next lab.
- I made some requests for improvements even if I assigned full credit. Please make these before submitting your portfolio, even though they will not affect your grade.
- The piecewise function could have been useful.
Lab: Computing log1p

- Overall, I am very happy with the work on the first lab. The problem statement required you to think through many issues and come up with some clever ideas. I saw people working hard, and the final product shows.
- Remember that resubmissions will be accepted. There will be a 10-point penalty assessed on the first resubmission, so everyone still has the chance to receive 90%.
- Include an abstract with the next lab.
- I made some requests for improvements even if I assigned full credit. Please make these before submitting your portfolio, even though they will not affect your grade.
- The piecewise function could have been useful.
- You may have found a good value for n by trial and error, comparing with Matlab’s function. Not for a grade: think about how you could support the claim that your implementation has relative error $\leq 10^{-15}$ without using Matlab’s function. Perhaps bound the remainder term by hand; perhaps show some sort of numerical evidence.
Lab: Computing log1p

- Overall, I am very happy with the work on the first lab. The problem statement required you to think through many issues and come up with some clever ideas. I saw people working hard, and the final product shows.
- Remember that resubmissions will be accepted. There will be a 10-point penalty assessed on the first resubmission, so everyone still has the chance to receive 90%.
- Include an abstract with the next lab.
- I made some requests for improvements even if I assigned full credit. Please make these before submitting your portfolio, even though they will not affect your grade.
- The piecewise function could have been useful.
- You may have found a good value for \(n \) by trial and error, comparing with Matlab’s function. Not for a grade: think about how you could support the claim that your implementation has relative error \(\leq 10^{-15} \) without using Matlab’s function. Perhaps bound the remainder term by hand; perhaps show some sort of numerical evidence.
Lab: Computing erf

- On Wednesday, I suggested the idea of piecing together different approximations. The piecewise function is useful for this.